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Abstract This paper provides sufficient conditions when certain informa-
tion about the past of a stochastic decision processes can be ignored by a
controller. We illustrate the results with particular applications to queueing
control, control of semi-Markov decision processes with iid sojourn times,
and uniformization of continuous-time Markov decision processes.

1 Introduction

The results of this paper are based on the following simple observation. If
each state of a controlled stochastic system consists of two coordinates and
neither the transition mechanism for the first coordinate nor costs depend
on the second coordinate, the controller can ignore the second coordinate
values. Theorem 2 and Corollary 4 present the appropriate formulations for
discrete-time and for continuous-time jump problems respectively and for
various performance criteria including average costs per unit time and total
discounted costs. These statements indicate that additional information,
presented in the second coordinate, cannot be used to improve the system
performance. Though these facts are simple and general, they are useful for
the analysis of various particular problems.

This paper is motivated by two groups of applications: (i) controlled
queues and (ii) uniformization of Continuous-Time Markov Decision Pro-
cesses (CTMDP). We illustrate our motivation in the introduction with one
of such applications. Additional examples are presented in Section 4.

Consider the problem of routing to parallel queues with the known work-
load; see the last example “Policies based on queue length and workload” in
?? Supported in part by grant DMI-0300121 from the National Science Founda-
tion
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Koole [17]. Customers arrive according to a Poisson process into a system
consisting of m homogeneous restless queues. The service times of arriving
customers are not known at the arrival epochs but the state of the system,
that an arrival sees, is known. This state includes the workloads in all m
queues. The costs depend only on the workload vector. In particular, the
m-dimensional vectors of workloads and numbers of customers in queues
are known. We denote them by w and ` respectively. Since nothing depends
on `, this coordinate was dropped in [17] and the state of the system was
reduced to the the workload vector w.

If the service discipline is FIFO or all m queues use deterministic service
disciplines, then the sufficiency of using w as the state space follows from
the following simple arguments. Let Wn−1 be the workload vector that the
nth arrival sees, n = 0, 1, . . . , and W0 is the null vector. Then the sequence
W1, . . . ,Wn, . . . defines the numbers of customers in each of m queues. For
the finite-horizon discounted cost criterion studied in [17], Markov policies
are optimal. Therefore, the numbers of customers in queues can be ignored
by optimal policies.

If the service discipline selects customers randomly, the sequenceW1,W2, . . .
does not define the numbers of customers in queues and the above argu-
ments fail. Consider the following example. Let m = 1. The service is non-
preemptive and the server selects customers from the queue with equal
probabilities. Let an nth arrival see a queue with 2 customers of which one
is at the server. The remaining service time of the customer at the server is
1 (everything is in minutes), and the service time of the waiting customer
is 3. Thus, the total workload is 4. Let the (n + 1)st customer arrives in 3
minutes and sees the workload 2. This implies that the service time of the
nth arrival is 1. However, the number of customers that (n + 1)st arrival
sees can be either 1 or 2.

The results of this paper imply that even for randomized service dis-
ciplines, it is indeed sufficient to know only the workload vector w in the
problem considered in [17]. Consider the larger state z which is the set of m
strings (`i, wi,1, . . . , wi,`i

), i = 1, . . . ,m, where `i is the number of customers
in queue i and wi,1, . . . , wi,`i are their remaining service times. We notice
that (wi,1, . . . , wi,`i) = ∅ when `i = 0. Given any service discipline for each
of these m queues, it is easy to construct a Markov Decision Process (MDP)
with states z for this problem. Each state z defines the workload vector and
the numbers of customers in queues as appropriate sums. Therefore, the
state z can be rewritten as (w, `, z) and the transition probabilities relevant
to w and the costs do not depend on (`, z). Therefore, in view of Theorem 2
and Corollary 4, the coordinates ` and z can be dropped and it is indeed
sufficient to know only the vector of workloads w.

Now consider the version of same problem from [17] when customers
arrive in batches. All the customers in a batch should be directed to the
same server. The arguments based on the state expansion to (w, `, z) and
on using Theorem 2 and Corollary 4 imply that it is sufficient to know the
workload vector w and the queue sizes ` can be ignored. The arguments
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based on the history of observed workload vectors W1,W2, . . . do not work
because this sequence does not define the numbers of customers in queues.

This paper is organized in the following way. Section 2 deals with discrete-
time problems and Section 3 deals with continuous-time jump problems. In
both cases we consider controlled non-Markovian systems because the proofs
are the same as for MDPs. We show that if neither the transition mecha-
nism for the first coordinate nor costs depend on the second coordinate, this
coordinate can be dropped and therefore the problem can be simplified.

Section 4 deals with additional applications to queueing control and to
uniformization, the procedure that reduces CTMDPs to MDPs by using
fictitious jumps. For such a reduction, uniformization was introduced by
Lippman [18]. It holds for the class of stationary policies [2,4,20,21]. For
general policies, durations of fictitious jumps add information to the system.
We show that, for problems with arbitrary state spaces and bounded one-
step costs, this additional information can be ignored for the average costs
per unit time criterion if stationary optimal or nearly optimal policies exist
for the corresponding discrete-time MDP.

2 Discrete-time problems

Consider a Stochastic Decision Process (SDP) defined by the quadruplet
{X,A, p, v}, where X is the state space, A is the action space, p is the
transition kernel, and v is the criterion. We assume that X and A are
Borel spaces, i.e. they are isomorphic to measurable subsets of a Polish (in
other words, complete separable metric) space; see [3] or [5] for details. Let
Hn = X × (A ×X)n be the sets of histories up to epoch n = 0, 1, . . . and
let H = ∪0≤n<∞Hn be the set of all finite histories. We can also consider
the set of infinite histories H∞ = (X × A)∞. The products of the Borel
σ-fields on X and A define the Borel σ-fields on Hn, n = 0, 1, . . . ,∞, and
these σ-fields generate the Borel σ-field on H. Then p is defined as a regular
transition probability from H × A to X, i.e. p(B|h, a) is a Borel function
on H × A for any fixed Borel subset B of X and p(·|h, a) is a probability
measure on A for any pair (h, a), where h ∈ H and a ∈ A.

A policy is defined as a regular transition probability from H to A.
Therefore, a policy defines the transition probabilities from Hn to A and
the transition kernel p defines the transition probabilities from Hn × A
to X. According to Ionescu Tulcea’s theorem [5], any initial probability
distribution µ on X and any policy π define a unique probability measure
Pπ

µ on H∞. Following [5], we shall call Pπ
µ a strategic measure.

A criterion v is defined as a numerical function of a strategic measure,
v(µ, π) = v(Pπ

µ ). If p is just a function of (xn, an), the defined SDP becomes
an MDP.

The expected total discounted costs and the average costs per unit time
are two important criteria studied in the literature. Expected total dis-
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counted costs can be represented in the form of

v = Eπ
µU(h∞), (1)

where h∞ ∈ H∞ and U is a measurable function on H∞. Indeed, let
c(x, a) ≥ 0 be one-step costs. Then formula (1) with U(h∞) =

∑∞
i=0 β

ic(xi, ai)
defines the total expected discounted costs with the discount factor β.

Average costs per unit time can be represented as

v(µ, π) = lim sup
n→∞

Eπ
µUn(h∞) (2)

with Un(h∞) = n−1
∑n−1

i=0 c(xi, ai). We observe that the representation (2)
is more general than (1) because (2) becomes (1) when Un = U. In addition
to average costs per unit time and to total discounted costs, a large variety
of other criteria can be presented in the forms of (1) and (2).

We remark that it is natural to consider problems in which actions sets
depend on the current state or even on the past history, [3,5,10,13,14,20,
21]. We do not do it here because of the following two reasons: (i) simplicity
and (ii) the functions U and Un can be set equal to −∞ on infeasible tra-
jectories for maximization problems and to +∞ for minimization problems.

Now assume that X = X1×X2, where X1 and X2 are two Borel spaces.
The state of the system is x = (x1, x2). In addition, we assume that at each
stage n = 0, 1, . . ., transition probabilities on X1 do not depend on the
second component of the state space. In other words,

p(dx1
n+1|x1

0, x
2
0, a0, . . . , x

1
n, x

2
n, an) = p(dx1

n+1|x1
0, a0, . . . , x

1
n, an). (3)

For any probability measure P on H∞, consider its projection P̄ on
(X1×A)∞. The measure P̄ is defined by the following probabilities defined
on cylinders

P (X1
0 ×A0 × · · · ×X1

n ×An) = P (X1
0 ×X2 ×A0 × · · · ×X1

n ×X2 ×An),

where n = 1, 2, . . . , and X1
i and A1

i are measurable subsets of X1 and A
respectively, i = 0, . . . , n. For a strategic measure Pπ

µ we note its projection
on (X1×A)∞ by P̄π

µ . Consider the following assumption on the criterion v.

Assumption 1 v(µ, π) = v(µ, π′) for any two policies π and π′ such that
P̄π

µ = P̄π′

µ .

If Assumption 1 holds then v(µ, π) = f(P̄π
µ ) for some function f defined

on the set of all probability measures on (X1 × A)∞. For example, if v
is defined by (2) with Un(h∞) = Un(x1

0, a0, x
1
1, a1, . . .), then Assumption 1

holds. If one-step costs c do not depend on x2, the average cost per unit
time and total discounted cost criteria satisfy Assumption 1.

Consider an SDP with the state space X1, action set A, and transition
kernels p(dx1

n+1|x1
0, a0, . . . , x

1
n, an). Let P̃σ

µ1 be a strategic measure for this
smaller SDP, where µ1 is an initial probability distribution on X1 and σ is
a policy in the smaller model. Every P̃σ

µ1 is a probability measure on the
space (X1 ×A)∞. Let ṽ(µ1, σ) be a criterion for this SDP. If Assumption 1
holds, we set ṽ(µ1, σ) = f(P̃σ

µ1
).
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Theorem 2 Consider an SDP with the state space X = X1 ×X2 and let
assumption (3) hold. For any initial state distribution µ on X = X1 ×X2

and for any policy π for this SDP, consider a policy σ for the SDP with the
state space X1 defined for all n = 0, 1, . . . (Pπ

µ -a.s.) by

σ(dan|x1
0a0x

1
1a1 . . . x

1
n) =

Pπ
µ (dx1

0da0dx
1
1da1 . . . dx

1
ndan)

Pπ
µ (dx1

0da0dx1
1da1 . . . dx1

n)
. (4)

Then (i)

Pπ
µ (dx1

0da0dx
1
1da1 . . .) = P̃σ

µ1(dx1
0da0dx

1
1da1 . . .),

where µ1 is the marginal probability measure on X1 induced by µ, i.e.
µ1(C) = µ(C × X2) for any measurable subset C of X1. In other words,
P̃σ

µ1 is the projection of the strategic measure Pπ
µ on (X1 ×A)∞.

(ii) If, in addition, Assumption 1 holds then ṽ(µ1, σ) = v(µ, π).

Proof By Kolmogorov’s extension theorem, to verify (i) it is sufficient to
prove that for any n = 0, 1, . . .

Pπ
µ (dx1

0da0dx
1
1da1 . . . dx

1
n) = P̃σ

µ1(dx1
0da0dx

1
1da1 . . . dx

1
n). (5)

We prove this equality by induction in n. It holds for n = 0 because
Pπ

µ (x1
0 ∈ C) = P̃σ

µ1(x1
0 ∈ C) = µ1(C) for any policies π and σ in the

corresponding models.
Let (5) hold for some n. Then

P̃σ
µ1(dx1

0da0dx
1
1da1 . . . dx

1
ndan) = P̃σ

µ1(dx1
0da0dx

1
1da1 . . . dx

1
n)σ(dan|x1

0a0x
1
1a1 . . . x

1
n)

= Pπ
µ (dx1

0da0dx
1
1da1 . . . dx

1
ndan),

(6)
where the first equality follows from the definition of a strategic measure
and the second equality follows from (4) and (5). Since the transition prob-
abilities in the first model do not depend on x2, we have

P̃σ
µ1(dx1

0da0dx
1
1da1 . . . dx

1
ndandx

1
n+1)

= P̃σ
µ1(dx1

0da0dx
1
1da1 . . . dx

1
ndan)p(dx1

n+1|x1
0, a0, . . . , x

1
n, an)

= Pπ
µ (dx1

0da0dx
1
1da1 . . . dx

1
ndan)p(dx1

n+1|x1
0, a0, . . . , x

1
n, an)

= Pπ
µ (dx1

0da0dx
1
1da1 . . . dx

1
ndandx

1
n+1),

(7)

where the first equality follows from the definition of the strategic measure
P̃σ

µ1 and the second equality follows from (6). Statement (i) yields (ii).
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3 Continuous-time jump problems

In the defined SDP, all time intervals between decisions equal 1. In this sec-
tion, we extend Theorem 2 to a more general situation when these intervals
may be random and different.

We define a Continuous-Time SDP (CTSDP). A trajectory of a CTSDP
is a sequence x0, a0, τ0, x1, a1, τ1, . . . , where xn is the state of the system
after jump n, an is the action selected after the jump occurred, and τn is
the time until the next jump. The above definition of an SDP is so gen-
eral that we can use it to define a CTSDP. We set τ−1 = 0 and define
a CTSDP {X,A, q}, as an SDP {[0,∞) × X,A, q, v}, where X is a Borel
state space, A is a Borel action space, and q is a transition kernel which is a
conditional joint distribution of the sojourn time and the next state. Accord-
ing to this definition, the transition probabilities after the n-th jump are
q(dτn, dxn+1|x0, a0, τ0, x1, a1, . . . , τn−1, xn, an). For this SDP, we consider
only initial distributions µ on [0,∞) × X with µ(0, X) = 1, i.e. τ−1 = 0
with probability 1. Therefore, we interpret µ as a probability measure on
X and will not mention τ−1 anymore. A CTSDP is called a Semi-Markov
Decision Process (SMDP) if the SDP {[0,∞)×X,A, q} is an MDP. In other
words, if the transition kernel q has the form q(dτn, dxn+1|xn, an).

Since a CTSDP is defined via the corresponding SDP, we have policies
and strategic measure also defined for the CTSDP. The objective criterion v
is a function of a strategic measure Pπ

µ for this CTSDP, i.e. v(µ, π) = v(Pπ
µ ).

For each t ≥ 0, consider a measurable function Ut(h∞), where h∞ =
x0, a0, τ0, x1, a1, τ1, . . . . Consider the criterion

v(µ, π) = lim sup
t→∞

Eπ
µUt(h∞). (8)

The expected average cost per unit time is an important example of a cri-
terion that can be presented in the form (8). Let c(x, a, t) ≥ 0 be the cost
incurred during time t elapsed since the last jump, where x is the current
state and a is the last selected action. Let t0 = 0 and tn+1 = tn + τn,
n = 0, 1, . . . . We set N(t) = sup{n = 0, 1, . . . |tn ≤ t}. The average cost up
to time t is Ut(h∞) = Lt/t, where Lt is the cost up to time t,

Lt =
N(t)−1∑

n=0

c(xn, an, τn) + c(xN(t), aN(t), t− tN(t)), (9)

h∞ = x0, a0, τ0, x1, a1, τ1, . . . . Then the expected average cost per unit
time is defined by (8). The expected total discounted costs can also be
represented in the form of (8) because they can be presented in the form of
(1) with h∞ = x0, a0, τ0, x1, a1, τ1, . . . . In particular, for the expected total
discounted costs

U(h∞) =
∞∑

n=0

e
−γ

n−1∑
i=0

τi

∫ τn

0

c(xn, an, t)e−γtdt,
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where γ > 0 is the discount rate. Note that (1) is a particular form of (8)
with Ut = U.

Similarly to the discrete time case, consider a CTSDP with a Borel state
space X = X1 ×X2 and a Borel action space A. We assume that the joint
distributions of τn and x1

n+1 do not depend on x2
i , i = 0, 1, . . . , n, i.e.

q(dτn, dx1
n+1|x1

0, x
2
0, a0, τ0, x

1
1, x

2
1, a1, τ1, . . . , x

1
n, x

2
n, an)

= q(dτn, dx1
n+1|x1

0, a0, τ0, x
1
1, a1, τ1, . . . , x

1
n, an). (10)

Similarly to the discrete-time case, we denote by P̄ the projection on
(X1×A×[0,∞))∞ of a probability measure P defined on (X1×A×[0,∞))∞.
For a strategic measure Pπ

µ we denote the corresponding projection by P̄π
µ .

The following assumption is similar to Assumption 1.

Assumption 3 v(µ, π) = f(P̄π
µ ) for some function f defined on the set of

probability measures on (X1 ×A× [0,∞))∞.

For example, Assumption 3 holds for the criterion (8) when Ut(h∞) =
Ut(x1

0, a0, τ0, x
1
1, a1, τ1, . . .).

Similarly to the discrete time case, we consider a smaller CTSDP with
the state space X1, action space A, and transition kernel
q(dτn, dx1

n+1|x1
0, a0, τ0, x

1
1, a1, τ1, . . . , x

1
n, an). Let P̃σ

µ1 be a strategic measure
for this smaller CTSDP, where µ1 is an initial probability distribution onX1

and σ is a policy in the smaller model. Every P̃σ
µ1 is a probability measure

on the space (X1 × A × [0,∞))∞. When Assumption 3 holds, we consider
the criterion ṽ(µ1, σ) = f(P̃σ

µ1). Theorem 2 implies the similar result for
CTSDPs.

Corollary 4 Consider a CTSDP with the state space X = X1×X2 and let
assumption (10) hold. For any initial state distribution µ on X = X1 ×X2

and for any policy π for the CTSDP with the state space X = X1 × X2,
consider a policy σ for the CTSDP with the state space X1 defined for all
n = 0, 1, . . . (Pπ

µ -a.s.) by

σ(dan|x1
0a0τ0x

1
1a1τ1 . . . x

1
n) =

Pπ
µ (dx1

0da0dτ0dx
1
1da1dτ1 . . . dx

1
ndan)

Pπ
µ (dx1

0da0dτ0dx1
1da1dτ1 . . . dx1

n)
, (11)

n = 0, 1, . . . . Then (i)

Pπ
µ (dx1

0da0dτ0dx
1
1da1dτ1 . . .) = P̃σ

µ1(dx1
0da0dτ0dx

1
1da1dτ1 . . .), (12)

where µ1 is the marginal probability measure X1 induced by µ, i.e. µ1(C) =
µ(C,X2) for any measurable subset C of X1. In other words, P̃π

µ1 is the
projection of the strategic measure Pπ

µ on (X1 ×A× [0,∞))∞.
(ii) If, in addition, Assumption 3 holds then ṽ(µ1, σ) = v(µ, π).
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4 Examples of applications

In addition to the example considered in the Introduction, in this Ssection
we apply Theorem 2 and Corollary 4 to the MX/G/1 queue with a remov-
able server and known workload, to the admission control, to SMDPs with
iid sojourn times, and to uniformization of CTMDPs.

MX /G/1 queue with a removable server. Consider a single-server
queue with batch arrivals. The batches arrive according to a Poisson process
with a given intensity. At the arrival epoch, the workload in the batch
becomes known. The server can be turned on and off and switching costs
are positive. The holding costs depend only on the workload.

Control of queues with the removable server and known workload has
been studied in the literature since 1973 when Balanchandran [1] introduced
the notion of a D policy that switches the server on when the workload is
greater than or equal to D and switches the server off when the system
becomes empty. The optimality of D policies for average costs per unit time
under broad conditions was proved in [8], where it was assumed that the
controller knows only the workload w and the state of the server.

Now we consider the situation when customers arrived in batches. The
question is whether the information about the numbers of customer in
batches and individual service times is useful? The answer is that this in-
formation is useless and can be ignored. Therefore, D-policies are optimal
for MX/G/1 queues under the conditions formulated in [8].

The correctness of this answer follows from the following arguments.
As was shown in [8, Section 3], it is sufficient to make switching decisions
only at the arrival epochs and at the epochs when the system becomes
empty. Therefore, we can consider an SMDP when decisions are selected
only at these epochs. The state of this SMDP is (w, g), where w is the
workload and d is the state of the server (on or off). We enlarge the state
of the system by adding the coordinate z = (j, s1, . . . , sn) containing the
number of customers j in the arrived batch and the customer service times.
Then neither transitions of (w, g) nor costs depend on z and, in view of
Corollary 4, the coordinate z can be dropped from the state description.
Thus, D-policies are also optimal for MX/G/1 queues.

Admission control. Consider a finite queue with a renewal process
of arrivals. If this queue contains n customers, the departure time has an
exponential distribution with the intensity µn. Arriving customers belong
to different types. Suppose that there are m types of customers. A type
i customer pays ri for the service when the customer is admitted, i =
1, . . . ,m. The types of arriving customers are iid and do not depend on any
other events associated with the system. The service intensity µn does not
depend on the types of accepted customers.

An arrival can be either accepted or rejected when it is entering the
system. If the system is full, the arrival is rejected. An arrival can also
be rejected to maximize average rewards per unit time. The arrival’s type
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becomes known at the arrival epoch. The question is which arrivals should
be rejected to maximize the average rewards per unit time?

By considering arrival epochs as decision epochs, it is easy to formulate
this problem as an average reward SMDP with iid sojourn times equal to
interarrival times. The state space is X1 × X2, where X1 is the set of
pairs (n, r) with n equal to the number of customers that an arrival sees
in the system and with r equal to the amount that the arrival is willing
to pay if admitted, and X2 is the arrival type. We observe that transition
probabilities on X1 do not depend on the type of an arrived customer.
In addition, the reward function is r = r(x1, x2) = r((n, r),m) = r and
therefore the rewards do not depend on the second coordinate x2 = m,
which is the customer type. In view of Corollary 4, the information regarding
the arrival type can be ignored if customer’s payoff r is known. Therefore,
if ri = rj for type i and j customers, the customers of these types can
be merged into one type of customers. Therefore, the number of different
customer types can be reduced to the number of different payoffs ri.

In fact, it is natural to assume that ri 6= rj when i 6= j. Miller [19] and
Feinberg and Reiman [9] used this assumption. The need to consider the
problem with ri = rj for i 6= j appears in cases of multiple criteria and
constraints. Even when different classes have different rewards, the method
of Lagrangian multipliers may lead to the situation when different classes
have equal rewards; see [6] for details.

SMDPs with iid sojourn times. Consider an SMDP in which the
sojourn times τn do not depend on states and actions and form a sequence
of nonnegative iid random variables. Let the costs c incurred during the
first u units of time in state xn, where u ≤ τn, be nonnegative and satisfy
the condition c(xn, an, u) ≤ C1 + C2u for all xn ∈ X, an ∈ A, where C1

and C2 are nonnegative finite constants. The function c is assumed to be
measurable. Let c̄(x, a) = Ec(x, a, τ1) be the expected total cost until the
jump if an action a is selected at a state x. We shall also assume that
0 < τ̄ <∞, where τ̄ = Eτ1.

From an intuitive point of view, such an SMDP with average costs per
unit time is essentially an MDP and the knowledge of a real time parameter
t is unimportant. We prove this fact by using Theorem 2.

Let t0 = 0 and tn+1 = tn + τn, n = 0, 1, . . . . Consider the total cost
Lt up to time t defined in (9) and the expected average costs per unit time
v(µ, π) defined by (8) with Ut(h∞) = Lt/t.

Since all sojourn times are iid, it is intuitively clear that the costs do
not depend on actual sojourn times. Our immediate goal is to prove that
for any initial distribution µ and for any policy π

v(µ, π) = lim sup
n→∞

n−1Eπ
µ

n−1∑
i=0

c̄(xti
, ati

)/τ̄ . (13)

To prove (13) we first rewrite it,

v(µ, π) = lim sup
n→∞

(nτ̄)−1Eπ
xLtn

. (14)
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Second, we observe that

lim sup
n→∞

(nτ̄)−1Eπ
xLtn

= lim sup
n→∞

(nτ̄)−1Eπ
xLnτ̄ . (15)

To prove (15), we notice that N(t) is a renewal process and

|Eπ
µLtn

− Eπ
µLnτ̄ |

n
≤ C1

E|N(nτ̄)− n|
n

+ C2
E|tn − nτ̄ |

n
(16)

and the right hand side of (16) tends to 0 as n → ∞. The first summand
in the right hand side of (16) tends to 0 according to [12, Theorem 5.1,
p. 54, and Theorem 1.1, p. 166] and the fact that a.s. convergence implies
convergence in probability. The second summand tends to 0 according to
[11, Lemma 13, p. 192]. Thus, (15) is proved.

We observe that

lim sup
n→∞

(nτ̄)−1Eπ
xLnτ̄ = lim sup

t→∞
(τ̄ [t/τ̄ ])−1Eπ

xLτ̄ [t/τ̄ ] = lim sup
t→∞

t−1Eπ
xLτ̄ [t/τ̄ ].

In view of (15), the last line of equalities implies

lim sup
t→∞

t−1Eπ
xLτ̄ [t/τ̄ ] = lim sup

n→∞
(nτ̄)−1Eπ

xLtn
(17)

In addition,

0 ≤ t−1[Lt − Lτ̄ [t/τ̄ ]] ≤ t−1C1(N(t)−N(t− τ̄)) + C2τ̄ /t. (18)

By taking the expectation in (18), setting t→∞, and applying the renewal
theorem, we obtain the equality

v(µ, π) = lim sup
t→∞

t−1Eπ
xLτ̄ [t/τ̄ ].

This equality, (17), and (15) imply (14). Thus, (13) is proved.
We consider this SMDP as an MDP with the state space X1×X2, where

X1 = X and X2 = [0,∞). The time parameter t ∈ X2 affects neither the
transition probabilities between states in X1 nor the objective criterion v.
The latter follows from (13). Therefore, in view of Theorem 2, the policies
that do not use the information about sojourn times τ0, τ1, . . . are as good
as policies that use this information. Consider the MDP with the same state
and action sets as the given SMDP, with the same transition probabilities,
and with one-step costs c̄(x, a)/τ. For average costs per unit time, this MDP
has the same value function as the original SMDP. In addition, stationary
optimal policies for this MDP are optimal for the original SMDP.

We remark that the assumption that c(xn, an, u) ≤ C1 + C2u, where
C1 and C2 are constants, for SMDPs with iid sojourn times is similar to
the assumption that costs are bounded in discrete-time MDPs. The case of
unbounded costs is important but we do not study it in this paper.

Uniformization of Continuous-Time Markov Decision Processes
(CTMDPs). A CTMDP is an SMDP with exponential sojourn times
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and with transition probabilities that do not depend on these times. In
other words, q(dτndxn+1|xn, an) = λ(xn, an)p(dxn+1|xn, an), where (i) 0 ≤
λ(x, a) < K for all x ∈ X, a ∈ A, and for some K <∞, and (ii) p is a transi-
tion kernel from X×A into A with the property p(x|x, a) = 0 for all x ∈ X.
The system incurs two types of costs: (i) the instant costs c(xn, an, xn+1)
when the system jumps from state xn to state xn+1 and the control an is
used, and (ii) the cost rates C(xn, an) incurred per unit time in state xn

if the control an is chosen. For simplicity, we assume that the functions c
and C are nonnegative and bounded. In addition, we assume that these
functions are measurable. Though for CTMDPs it is possible to consider
policies that change actions between jumps (see [7,15,16]), we do not do
it here for the sake of simplicity. In fact, according to the terminology in
[7], CTMDPs considered here are ESMDPs (exponential SMDPs or, more
precisely, SMDPs with exponential sojourn times).

Uniformization (see Lippman [18] or monographs [2,20,21]) introduces
fictitious zero-cost jumps from states xn into themselves with intensities
(K − λ(xn, an)). This reduces a CTMDP with jump intensities bounded
above by K to a SMDP with sojourn times being iid exponential random
variables with the intensityK. The above results on SMDPs with iid sojourn
times imply that the controller does not benefit from the knowledge of
sojourn times in the uniformized SMDP and the problem can be reduced to
an MDP. If this MDP has a stationary optimal policy, this policy is optimal
for the original CTMDP. This justifies uniformization for nonstationary
policies and without using the fact that there is a stationary optimal policy
for the original CTMDP.

We provide additional explanations. Let v be the expected average cost
per unit time in the original CTMDP and v1 and v2 be the similar crite-
ria for the uniformized SMDP and in the corresponding MDP respectively.
This MDP has the same states and actions as the original CTMDP, the
transition probabilities p̃(y|x, a) = λ(x, a)p(y|x, a)/K when y 6= x, and
p̃(x|x, a) = 1 − λ(x, a)/K. The one-step costs are c̃(x, a) = C(x, a) +∑

y 6=x c(x, a, y)λ(x, a)p(y|x, a).
Since any policy π for the original CTMDP can be implemented in

the uniformized SMDP, v1(µ, π) = v(µ, π). According to the results on
SMDPs with iid sojourn times, there exists a policy σ in the MDP such
that v2(µ, σ) = v1(µ, π). Thus, if for the MDP there exists a stationary
optimal policy, this policy is optimal for the original CTMDP. This is also
true for problems with multiple criteria and constraints with a fixed ini-
tial distribution µ; see [7] for the constrained problem definition. However,
for constrained discrete-time problems, an optimal policy is typically ran-
domized stationary. For an optimal randomized stationary policy ϕ in the
described above MDP, it is possible to construct a policy ψ in the original
CTMDP such that v(µ, ψ) = v2(µ, ϕ) and therefore the policy ψ is optimal
for the original CTMDP.

We remark that the reduction of continuous-time models to discrete
time, by using uniformization, holds also for discounted total costs [18,
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4]. However, discounted CTMDPs and discounted SMDPs can be directly
reduced to discrete time discounted MDPs without using uniformization;
see [7].
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